
The Sous-gardener II ™

Nana Porter-Honicky

ME135 Design of Microprocessor-Based Mechanical Systems

Contents

1 Overview 1
1.1 Background & Motivation . . . 1
1.2 Description 1

2 GUI 2
2.1 Real-Time & Multitasking . . . 2

3 Highlights 2

4 Reflection 3

1 Overview

1.1 Background & Motivation

I am a big plant mom. I have over 80 plants
in my apartment and sometimes that can be
a bit overwhelming to handle as a full time
engineering student. This is where the Sous-
gardener II ™ comes in. It is called the Sous-
Gardener II because this project is an upgrade
to a project done for ME100 with the same
name. The original Sous-Gardener ™ only
read soil moisture data and then sent it to an
MQTT plotter. The Sous-Gardener II ™ will
not only plot moisture and light level data it
will also actuate a pump and grow-light based
on the sensor data as well as allow for toggling
of both the light and the pump.

1.2 Description

The set up for this project is fairly simple.
It uses two sensors, a moisture sensor and a
light sensor, to actuate two things, a small
pump and a grow light. The code governing
the actuation has two general states: man-
ual and automatic. There is a button in the
GUI allowing you to switch between the two

settings. In the automatic setting, two loops
run asynchronously that read from the two
sensors and then actuate the pump and light
when predetermined thresholds are met. A
third asynchronous loop checks for button
inputs from the GUI. The three buttons in
the GUI toggle the setting, toggle the light
when in the manual setting, and toggle the
pump when in the manual setting. There is a
fourth asynchronous loop that reads the sen-
sors every second so that regardless of which
setting the system is in, the GUI can always
plot the sensor readings. The time between
sensor readings can be decreased but for the
purposes of this project it wasn’t necessary.

Figure 0: Full project assembly

In the automatic loop, a simple hystere-
sis control is used on the grow light based on
the light sensor data to prevent flickering (no
one wants a headache from this thing). The
pump control is a bit more complex (only a
bit); it is set to turn on the pump once the
moisture threshold is met only if it has not
been turned on in the last 20 seconds. The

Baltic Security Foundation

time of 20 seconds was chosen for the demo
but for actual use, the time between watering

would be closer to about two minutes.

2 GUI

Figure 1: GUI screen capture

2.1 Real-Time & Multitasking

The primary real-time multitasking imple-
mentation comes from the use of the module
uasyncio. This module allows us to (basi-
cally) simultaneously read the sensors, check
for input events, and toggle the pump and
light without any of these tasks interfering
with each other. It achieves this by quickly
switching between each of these tasks to al-
low each one an adequate portion of the CPU.
What this means is the program is responsive
event is real-time and can handle multiple
events at once (multitasking).

3 Highlights

There were two main issues I encountered
when trying to get the code to work smoothly;
the first was getting the events to trigger every

time there was a button press in the GUI. Af-
ter many failed attempts at get ChatGPT’s
help and a very helpful suggestion from my
father I decided to put all functions reading
for input events into one loop. Previously, I
had each function in a separate asynchronous
loop, which was causing the code to miss in-
puts maybe 60% of the time. Although this is
not the most impressive part this project, it
was a big win for me when I figured it out.

The second big issue I encountered was
getting the GUI to receive and plot the sensor
data without commissioning it on the Lab-
view end. I initially had Labview prompt
the sensor data every time the front panel
event structure went in to a timeout (every
25ms) but this resulted in the send-que be-
ing to full for button events to happen in a
timely manor. My solution was to change
the communication state machine to check

2

Baltic Security Foundation

for responses from the ESP32 that weren’t
prompted. The resulting state machine looked

like this:

Figure 2: Changed communication state machine

This state machine switches between
checking for responses from the ESP32 and
commands from Labview so that the GUI can
plot the sensor data without prompting it
while still maintaining function of the buttons
in the GUI. This state machine also stays in
receive until there is a command from Lab-
view instead of until there are no more bytes
at the port. This ensures that buttons in the
GUI will be read even when there are still re-
sponses coming in from the ESP32.

4 Reflection

The obvious next step for this project would
be to build it out and see if it can actually keep
a plant alive. Beyond that thought there are
a couple minor improvements I would make.
The first is that I think the communication
state machine could be made a bit more effi-
cient by having the state stay as receive until
there is a command in the que instead of send-

ing it back to idle. I also think using multiple
sensors for both moisture and light and taking
some aggregate of all of the data would make
the system a lot more robust. That way if
there is a momentary shadow on a light sensor
or the moisture sensor is in a particularly dry
or wet spot of soil, the light won’t needlessly
turn on and off and the plant is more likely to
get watered properly. Another improvement
would be to test out different plants preferred
thresholds and have some way to change the
thresholds on the GUI side of things depend-
ing on the plant. Another thing that may be
cool is to make it wireless (use some of that
ME100 knowledge) so that you can check in
on your plants from afar.

Overall I’m pretty happy with how this
project turned out given that I have pretty
limited experience with MicroPython and I
had never used Labview before this class. I
actually plan on testing the Sous-gardener II
on a few of my plants while I’m traveling this
summer.

3

Baltic Security Foundation

Appendix

Circuit Diagram

Parts List

Amount Name

1 x1 HUZZAH32 – ESP32 Feather Board
2 x1 12V Mini Submersible Water Pump
3 x1 Full Spectrum Grow Light
4 X1 STEMMA Soil Sensor
5 x1 TSL2591 High Dynamic Range Digital Light Sensor
6 x1 12V AC/DC Converter
7 x2 n-Channel Mosfet

MicroPython Code

import machine
from machine import Pin
import time
import seesaw
import s t emma so i l s en so r as S o i l
import t s l 2 591
import uasync io as async io
import s e l e c t
import sys

4

https://www.adafruit.com/product/3405
https://www.amazon.com/gp/product/B015GOGPSU/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.com/gp/product/B09T6QSSJY/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&th=1
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/1980
https://www.amazon.com/Adapter-2-08A-5-5mm-Switching-Charger/dp/B01M6ZN3NW

Baltic Security Foundation

growLight = Pin (5 , Pin .OUT)
pump = Pin (4 , Pin .OUT)
SDA PIN = 23
SCL PIN = 22
l i g h t = False
water = False
lastWatered = None
manual = False

i 2 c = machine . SoftI2C (sda=Pin (SDA PIN) , s c l=Pin (SCL PIN) , f r e q =400000)
moist = So i l . StemmaSoilSensor (i 2 c)
l i g h tS en s o r = t s l 2 591 . Tsl2591 (i 2 c)
print (’\ r\nESP32 Ready to accept Commands\ r\n ’)

def t ogg l eL i gh t () :
global l i g h t
l i g h t = not l i g h t
i f l i g h t == True :

print (”Gturning l i g h t on\n”)
else :

print (”Gturning l i g h t o f f \n”)
growLight . va lue (l i g h t)

def togglePump () :
global water
water = not water
i f water == True :

print (”Pturning water on . . . \ n”)
else :

print (”Pturning water o f f . . . \ n”)
pump . value (water)

def t o g g l e S e t t i n g () :
global manual
manual = not manual
i f manual == True :

print (”Tswitching from auto to manual\n”)
else :

print (”Tswitching from manual to auto\n”)

async def readSensors () :
while True :

mo = moist . g e t mo i s tu r e ()
f u l l = l i g h tS en s o r . g e t l um ino s i t y (” f u l l ”)
print (”W”+str (mo))
await async io . s l e e p (1)

5

Baltic Security Foundation

print (”L”+str (f u l l))

async def checkMoisture () :
global lastWatered
global manual
while True :

i f manual == False :
mo = moist . g e t mo i s tu r e ()
i f mo < 400 :

i f not pump . value () and (lastWatered i s None or . . .
time . time () − lastWatered > 20) :

print (”Pwatering p lant . . . \ n”)
pump . value (True)
await async io . s l e e p (5)
pump . value (Fa l se)
lastWatered = time . time ()
print (”Pturning o f f water . . . \ n”)

e l i f las tWatered i s not None and time . time () . . .
− l as tWatered <= 20:
pr i n t (” too soon to water again . . . ”)

e l i f mo > 450 :
pump . value (Fa l se)

await async io . s l e e p (0 . 5)

async def checkLight () :
global l i g h t
global manual
while True :

i f manual == False :
f u l l = l i g h tS en s o r . g e t l um ino s i t y (” f u l l ”)
i f f u l l < 25 :

i f not l i g h t :
print (”Gturning on grow l i g h t . . . \ n”)

l i g h t = True
e l i f f u l l > 35 :

i f l i g h t :
print (”Gturning o f f grow l i g h t . . . \ n”)

l i g h t = False
growLight . va lue (l i g h t)

await async io . s l e e p (0 . 5)

async def manualSett ing () :
global manual
while True :

r l i s t , , = s e l e c t . s e l e c t ([sys . s td in] , [] , [] , 0)
i f r l i s t :

command = sys . s td in . r e ad l i n e () . s t r i p ()

6

Baltic Security Foundation

i f command == ” I ” :
print (’ IESP32\ r\n ’)

e l i f command == ”T” :
t o g g l e S e t t i n g ()

e l i f command == ”P” and manual :
togglePump ()

e l i f command == ”G” and manual :
t ogg l eL i gh t ()

await async io . s l e e p (0 . 5)

loop = async io . g e t ev en t l o op ()
loop . c r e a t e t a s k (checkMoisture ())
loop . c r e a t e t a s k (checkLight ())
loop . c r e a t e t a s k (readSensors ())
loop . c r e a t e t a s k (manualSett ing ())
loop . r un f o r e v e r ()

7

	Overview
	Background & Motivation
	Description

	GUI
	Real-Time & Multitasking

	Highlights
	Reflection

