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State of the art of impedance estimation is experimentally intensive !

We propose a method of impedance estimation that minimizes the data

needed for reliable estimates using machine learning

-igure 1. Neural network  forecasting
method using torgue and angle inputs to
oredict  reactions to perturbation  for
estimating joint iImpedance parameters.

Sackgrouno

 Impedance is useful tool In understanding
hypertonia, spasticity, and paresis. 1l

» Impedance is task and phase dependent ]

Current method is a bootstrap sampling method
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Figure 2: Bootstrap sampling method comparing perturbed and
unperturbed trials to measure reaction to perturpbation for
mpedance estimation.
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Figure 3: Feed-forward neural network using pre-perturbation
data to forecast unperturbed trajectories for Iimpedance
parameter estimation.
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Figure 4: Model architecture with four linear layers processing
100ms pre-perturbation angle and torque data, using batch

normalization and Leaky RelU activations, with tanh output

constraining predictions to realistic values.

« Models trained on data from previous studies [©°!

« Simple feed-forward neural network structure

* Predict first derivative for vertical shift invariance

 Residual of actual perturbed data and predicted

nominal data gives reaction to perturbation
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Figure 5: Windowing method Figure ©6: Vertical shift invariance.

Impedance parameter estimates show similar trends across the gait cycle
to previously published values with different means

Creliminary Results
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Figure 7 Validation of different model types by percent of stance
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Figure 8: K-fold cross validation of D-NN by percent of stance
ohase compared to expected magnitude of 8, and Tp
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Figure 9. Estimates of impedance parameters by percent of
stance phase

Conclusions

* Jorque predictions are much better than angle
predictions compared to perturpbation magnitude

» Estimates from proposed method show similar
trends to published estimates

 Future work will include data from stroke
patients in the training data

e Subject independent model would cut data
collection in half
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